以文本方式查看主题 - 泉州交易平台 (https://bbs.eoof.net:443/index.asp) -- E友杂谈 (https://bbs.eoof.net:443/list.asp?boardid=30) ---- 经典悖论:语言的矛盾反映了思想的矛盾 (https://bbs.eoof.net:443/dispbbs.asp?boardid=30&id=4367770) |
||
-- 作者:区块链之吻 -- 发布时间:2019/12/23 8:56:00 -- 经典悖论:语言的矛盾反映了思想的矛盾 听证会上的难题 几周前,在英国国防部对核武器专家凯利就“情报门”事件的听证会上,一名议员向凯利提出这样的问题:“根据你的说法,你是不是这个事件的替罪羊呢?”对这个问题,凯利无论如何回答都不能摆脱矛盾:如果他说是,就与他自己的申辩相矛盾,因为他曾辩解说自己不是;如果他说不是,又与他所知道的事实相矛盾,因为事实表明他显然是。凯利面对这个语言陷阱,给出了一个圆滑的外交辞令:“我不知道。”没过几天,凯利神秘自杀。凯利的回答从表面上看回避了上述问题,但他实际上并没有解决这个矛盾:对议员的这个问题给出肯定或否定的回答都会产生悖论。那么什么是“悖论”呢?悖论就是由于语言表达层次出现的混淆而导致的自相矛盾。典型的语言悖论是“说谎者悖论”。 传说中的一个克里特岛人说过:“克里特岛人说的话都是谎话。”如果问他这句话是是假,我们就会陷入自相矛盾中:如果说他的话是的,由于他也是克里特岛人,所以根据他的话,他的话就应当是假的;如果说他的话是假的,“克里特岛人说的话都是谎话”这句话就是的。不仅日常语言表达中存在这样的悖论,就连被看作科学之皇后的数学和逻辑中也有这样的悖论,如康托尔(19世纪德国数学家、集合论的创立者)的“集合论悖论”和罗素的“类型论悖论”。 话里话外的区分 西方人对这种悖论的研究已经有两千年的历史。由于这样的悖论使用了“全称命题”的说法,所以在哲学上也带来了一系列后果,其中最重要的是涉及到“自我指称”的问题。就是说,当我们对涉及到自我的内容做出否定判断时,我们就会遇到悖论。例如,当我们说“一切知识都是不可靠的”,我们就陷入了一个悖论:如果我们同意这个说法,我们就至少有了一个可靠的知识,所以我们实际上就是不同意这个说法;如果我们不同意这个说法,我们就是在承认这个说法是的。黑格尔曾对这种悖论提出了一种“辨证的”解决办法,就是承认人类思维本身存在着矛盾,但他并没有正从语言表达上解决这个悖论。 直到20世纪初,对这种悖论的解决才有了突破性的进展,现代逻辑的诞生使人们有了比传统逻辑更为严格精确的工具,去分析那些造成话语矛盾和思想混乱的各种语言悖论。其中的一个重要成果,是用形式语言严格区分对日常语言的两种使用方式,即用作对象语言和用作元语言,前者可以叫做“话外”,就是使用语言对语言之外的东西有所言说,后者则是“话里”,就是对语言本身提出问题。例如,说谎者悖论就可以用这样的方法来澄清:那个克里特岛人说的话应当被看作是对象语言(话外),而对他的话提出问题,则属于元语言的用法(话里)。做出了这种区分后,我们就不会对他的话本身提出相同的问题,换句话说,对他提出这样的问题是毫无意义的,或者说不可能带来任何有认识价值的结果。 矛盾随处可见 当然,我们在日常使用语言时并不会随时注意我们的话是否带来了悖论;相反,有时我们还会有意无意地利用产生这种悖论的可能性,使我们的交谈更有戏剧性的冲突,希望由此可能碰撞出“思想的火花”,这特别出现在文学作品中。比如,鲁迅小说对20世纪30年代中国底层人物“双重性格”的描写,就大量使用了这样的手法。这就是鲁迅所说的“求己图”。 日常语言交流目的是为了达到相互理解,就是说要能够“听懂”对方的话。但这看似平常简单的事情却由于日常语言的歧义和模糊,往往会带来对话双方都意想不到的后果。朋友之间的误解可以随时间消失,但对重要信息的误读,却可能带来难以估量的损失。在现代逻辑和数学发展成就的鼓舞下,哲学家们运用逻辑分析的方法试图建造一种可以克服日常语言缺陷的理想语言,人们用这种语言表达思想,就会像用数学和逻辑语言那样精确和严格。这个理想激励当代哲学家们花了一个世纪的时间,用逻辑方法去分析自然科学和哲学中的一个个命题,努力澄清它们的意义。这些工作的成果是显著的,影响是深远的。但悖论并没有因此而消失,矛盾还是随处可见。因为我们随时使用的日常语言并没有改变,它的缺陷并没有由于理想语言的出现而被克服。但日常语言的模糊性反而显示了我们使用这种语言的魅力,比如,我们对爱情的言语表达就无法用形式语言给予精确的描述,同样,我们的感性知觉也难以用逻辑的语言表达。 语言的玄妙意味着思想的玄奥 传说罗素在与摩尔聊天时曾问摩尔:“你是从来不说谎的吧?”摩尔答道:“不!”罗素又说:“除了这个‘不’字,你是从来不说谎的。”在这里,罗素就落入了悖论的圈套:如果把摩尔的回答看作谎话,它就同时又是话,就是说,摩尔并不总是说话。可见,即使是解决悖论大师的罗素,在日常语言中也没有完全摆脱悖论。 其实,话里话外的玄机并不全是语言的过错。我们用语言无疑是为了表达思想和情感。虽然心中所想和口中所言有时并不一致,但说出来的东西一定是心中想过的,否则就是信口雌黄了。思想也不是赤裸裸地出现的,它一定要借助某种方式。人们以往认为一个思想只能用一种方式表达,现在则可以有多种方式表达一个思想,就是说,我们可以给思想变换多套“外衣”。每套外衣可能代表的是思想的不同方面,而思想的玄奥正是用各种不同的语言形式表达出来。我们的语言中有悖论,就说明我们的思维过程中有矛盾,说明我们的思想不是简单的、线形的。逻辑上存在矛盾就要想办法去克服,但思维中存在矛盾却是无法避免的,因为这恰好是思维的本性所在。
(1)1919年,罗素把他提出的集合论悖论通俗化如下的理发师悖论: 萨魏尔村有一位理发师,他给自己订下一条规则:他只给村子里自己不给自己刮胡子的人刮胡子。 请问他该不该给自己刮胡子? (2)梵学者的预言:印度预言家的女儿,在纸上写了一件事(一句话),让他父亲预言这件事在下午三点钟以前是否发生,并一个卡片上写“是”或“不”。 此梵学者,在卡片上写了一个“是”字。 他女儿在纸上写的一句话是:“在下午三点钟之前,你将写一个‘不’字在卡片上。” 梵学者发现,他被女儿捉弄了,无论他写“是”或“不”都是错的,他根本不可能预言对 (3)意料之外的考试:他出现于20世纪40年代初。一位教授宣布:下周的某一天要进行一次“意料之外的考试”,并称没有一个学生能在考试的那天之前预测出考试的日期。 一个学生“证明”,考试不会一周最后一天进行,如若不然,则倒数第二天就可以推测出来了。以次类推,考试不可能在任何一天进行。 其错误是第一步,并不能推断出“考试不在最后一天进行”,他要这么推论,那么最后一天考试仍然是“意料之外的考试”。 (4) 理发师悖论 在萨维尔村,理发师挂出一块招牌:“我只给村里所有那些不给自己理发的人理发。”有人问他:“你给不给自己理发?” (5)书目悖论 一个图书馆编纂了一本书名词典,它列出这个图书馆里所有不列出自己书名的书。那么它列不列出自己的书名? (6)苏格拉底悖论 苏格拉底有一句名言:“我只知道一件事,那就是什么都不知道。” (7)纸牌悖论 纸牌悖论就是纸牌的一面写着:“纸牌反面的句子是对的。”而另一面却写着:“纸牌反面的句子是错的。”这是由英国数学家Jourdain提出来的。我们同样推不出结果来。它最简单的形式是: (8)“如果说上帝是万能的,他能否创造一块他举不起来的大石头?” (9)一条鳄鱼抢走了一个小孩,它对孩子的母亲说:“我会不会吃掉你的小孩?答对了,孩子还给你;答错了,我就吃了他。” (10)老子的:“知者不言,言者不知。”是一条悖论,被白居易一语道穿。白居易在《读老子》里说道:“言者不知知者默,此语吾闻于老君。若道老君是知者,缘何自着五千文?” (11)“第二十二条军规” 这是一条臭名昭著的军规。它规定神经失常的飞行员可以停飞,但同时又规定申请停飞者必须头脑清醒。试想,一个神经失常的人不能申请,必须飞行;而头脑清醒者又怎么能证明他是神经失常?这纯粹是一条欺骗性的悖论。 (1)蠕虫爬橡皮绳:一条蠕虫从1km长的橡皮绳一端以1cm/s的匀速向另一端爬行,而橡皮绳却每秒(匀速)伸长1km,如此下去,蠕虫会不会爬到橡皮绳的另一端点?多数人凭直觉会认为蠕虫不会爬到终点,而这种直觉是错误的。因为橡皮绳是匀速伸长的,蠕虫也随之向前了,第一秒末爬了橡皮绳全长的1/100000 ,在第二秒末爬 1/200000,……类推得 1/100000(1+1/2+1/3+...+1/n+...) 当n充分大时,发散的调和级数的部分和可以等于(或超过)100000,而此时蠕虫就爬到了终点。 其值近似等于,这个时间比现在已知的宇宙年龄还要长,橡皮绳的长比已知的宇宙半径还要长。 (2)广义的芝诺悖论: 一盏灯,开一分钟,关半分钟,在开1/4分钟 ……如此下去,问最后灯是开着,还是关着。 哲学家马克斯.布莱克用另一种形式叙述:一个球在A盘中停一分钟,转到B中停 1/2 分钟,在传回A盘中停1/4 分钟,如此下去,最后球在哪一个盘中。此为抛球悖论。 (3)集合论悖论 “R是所有不包含自身的集合的集合。” 人们同样会问:“R包含不包含R自身?”如果不包含,由R的定义,R应属于R。如果R包含自身的话,R又不属于R。 (4)“罗素是教皇” 从单纯的逻辑上来讲,荒谬的假设可以推论出任何荒谬的结论,哪怕推理过程无懈可击。有人曾经让罗素证明从“2+2=5”推出“罗素是教皇”。罗素证明如下:由于2+2=5,等式的两边同时减去2,得出2=3;两边同时再减去1,得出1=2;两边移位,得出2=1。 教皇与罗素是两个人,既然2=1,教皇和罗素就是1个人,所以“罗素就是教皇”。 这个荒谬的结论,就是由一个荒谬的假设引发出来的。 (5)一元钱到哪里去了? 三个学生住旅馆,服务员收费30元。因此一个学生拿出了10元。但是后来经理说今天特价,一共只收25元。服务生退还了学生3元并拿了2元的小费。结果每个学生只出了9元,一共27元,加上服务员的2元,才29元(3×9+2=29),那剩下的1元到哪里去了? 也有人把故事改编成这种形式:约翰推销他的旧电视30元给三位妇女,结果每个妇女拿出10元来。约翰发现他的电视只值25元,于是他拿出2元钱作运输费,将其他3元钱退还给那三位妇女一人1元。结果仍然是3×9+2=29,有1元钱不知去向。 这问题很容易蒙住粗心的人,但仔细一点就可看出名堂来。每个学生实际出了9元,一共27元,其中25元是住宿费,剩下2元被服务员拿走,应该做减法3×9-2=25。如果要做加法,则应该加上退还的3元,3×9+3=30,不正是起初服务员收的30元吗?因此根本不存在“一元钱到哪里去了”的问题。 古今中外有不少著名的悖论,它们震撼了逻辑和数学的基础,激发了人们求知和精密的思考,吸引了古往今来许多思想家和爱好者的注意力。解决悖论难题需要创造性的思考,悖论的解决又往往可以给人带来全新的观念。 本文将根据悖论形成的原因,粗略地把它归纳为六种类型,分上、中、下三个部份。这是第一部份:由概念自指引发的悖论和引进无限带来的悖论 (一)由自指引发的悖论 以下诸例都存在着一个概念自指或自相关的问题:如果从肯定命题入手,就会得到它的否定命题;如果从否定命题入手,就会得到它的肯定命题。 1-1 谎言者悖论 公元前六世纪,哲学家克利特人艾皮米尼地斯(Epimenides):“所有克利特人都说谎,他们中间的一个诗人这么说。”这就是这个著名悖论的来源。 《圣经》里曾经提到:“有克利特人中的一个本地中先知说:‘克利特人常说谎话,乃是恶兽,又馋又懒’”(《提多书》第一章)。可见这个悖论很出名,但是保罗对于它的逻辑解答并没有兴趣。 人们会问:艾皮米尼地斯有没有说谎?这个悖论最简单的形式是: 1-2 “我在说谎” 如果他在说谎,那么“我在说谎”就是一个谎,因此他说的是实话;但是如果这是实话,他又在说谎。矛盾不可避免。它的一个翻版: 1-3 “这句话是错的” 这类悖论的一个标准形式是:如果事件A发生,则推导出非A,非A发生则推导出A,这是一个自相矛盾的无限逻辑循环。拓扑学中的单面体是一个形像的表达。 哲学家罗素曾经认真地思考过这个悖论,并试图找到解决的办法。他在《我的哲学的发展》第七章《数学原理》里说道:“自亚里士多德以来,无论哪一个学派的逻辑学家,从他们所公认的前提中似乎都可以推出一些矛盾来。这表明有些东西是有毛病的,但是指不出纠正的方法是什么。在1903年的春季,其中一种矛盾的发现把我正在享受的那种逻辑蜜月打断了。” 他说:谎言者悖论最简单地勾画出了他发现的那个矛盾:“那个说谎的人说:‘不论我说什么都是假的’。事实上,这就是他所说的一句话,但是这句话是指他所说的话的总体。只是把这句话包括在那个总体之中的时候才产生一个悖论。” (同上) 罗素试图用命题分层的办法来解决:“第一级命题我们可以说就是不涉及命题总体的那些命题;第二级命题就是涉及第一级命题的总体的那些命题;其余仿此,以至无穷。”但是这一方法并没有取得成效。“1903年和1904年这一整个时期,我差不多完全是致力于这一件事,但是毫不成功。”(同上) 《数学原理》尝试整个纯粹的数学是在纯逻辑的前提下推导出来的,并且使用逻辑术语说明概念,回避自然语言的歧意。但是他在书的序言里称这是:“发表一本包含那么许多未曾解决的争论的书。”可见,从数学基础的逻辑上彻底地解决这个悖论并不容易。 接下来他指出,在一切逻辑的悖论里都有一种“反身的自指”,就是说,“它包含讲那个总体的某种东西,而这种东西又是总体中的一份子。”这一观点比较容易理解,如果这个悖论是克利特以为的什么人说的,悖论就会自动消除。但是在集合论里,问题并不这么简单。 1-4 理发师悖论 在萨维尔村,理发师挂出一块招牌:“我只给村里所有那些不给自己理发的人理发。”有人问他:“你给不给自己理发?”理发师顿时无言以对。 这是一个矛盾推理:如果理发师不给自己理发,他就属于招牌上的那一类人。有言在先,他应该给自己理发。 反之,如果这个理发师给他自己理发,根据招牌所言,他只给村中不给自己理发的人理发,他不能给自己理发。 因此,无论这个理发师怎么回答,都不能排除内在的矛盾。这个悖论是罗素在一九○二年提出来的,所以又叫“罗素悖论”。这是集合论悖论的通俗的、有故事情节的表述。显然,这里也存在着一个不可排除的“自指”问题。 1-5 集合论悖论 “R是所有不包含自身的集合的集合。” 人们同样会问:“R包含不包含R自身?”如果不包含,由R的定义,R应属于R。如果R包含自身的话,R又不属于R。 继罗素的集合论悖论发现了数学基础有问题以后,1931年歌德尔(Kurt Godel ,1906-1978,捷克人)提出了一个“不完全定理”,打破了十九世纪末数学家“所有的数学体系都可以由逻辑推导出来”的理想。这个定理指出:任何公设系统都不是完备的,其中必然存在着既不能被肯定也不能被否定的命题。例如,欧氏几何中的“平行线公理”,对它的否定产生了几种非欧几何;罗素悖论也表明集合论公理体系不完备。 1-6 书目悖论 一个图书馆编纂了一本书名词典,它列出这个图书馆里所有不列出自己书名的书。那么它列不列出自己的书名? 这个悖论与理发师悖论基本一致。 1-7 苏格拉底悖论 有“西方孔子”之称的雅典人苏格拉底(Socrates,公元前470-前399)是古希腊的大哲学家,曾经与普洛特哥拉斯、哥吉斯等著名诡辩家相对。他建立“定义”以对付诡辩派混淆的修辞,从而勘落了百家的杂说。但是他的道德观念不为希腊人所容,竟在七十岁的时候被当作诡辩杂说的代表。在普洛特哥拉斯被驱逐、书被焚十二年以后,苏格拉底也被处以死刑,但是他的学说得到了柏拉图和亚里斯多德的继承。 苏格拉底有一句名言:“我只知道一件事,那就是什么都不知道。” 这是一个悖论,我们无法从这句话中推论出苏格拉底是否对这件事本身也不知道。古代中国也有一个类似的例子: 1-7 “言尽悖” 这是《庄子·齐物论》里庄子说的。后期墨家反驳道:如果“言尽悖”,庄子的这个言难道就不悖吗?我们常说: 1-7 “世界上没有绝对的真理” 我们不知道这句话本身是不是“绝对的真理”。 1-8 “荒谬的真实” 有字典给悖论下定义,说它是“荒谬的真实”,而这种矛盾修饰本身也是一种“压缩的悖论”。悖论(paradox)来自希腊语“para+dokein”,意思是“多想一想”。 这些例子都说明,在逻辑上它们都无法摆脱概念自指所带来的恶性循环。有没有进一步的解决办法?在下面一节的最后一部份还将继续探讨。 (二)引进无限带来的悖论 《墨子·经说下》中有一句话:“南方有穷,则可尽;无穷,则不可尽。”如果在有限中引进无限,就可能引起悖论。 2-1 阿基里斯悖论 稍晚于毕达哥拉斯的古希腊数学家芝诺(Zeno of Elea),曾经提出过一些著名的悖论,对以后数学、物理概念产生了重要影响,阿基里斯悖论是其中的一个。 阿基里斯(Achilles)是希腊神话中善跑的英雄。芝诺讲:阿基里斯在赛跑中不可能追上起步稍微领先于他的乌龟,因为当他要到达乌龟出发的那一点,乌龟又向前爬动了。阿基里斯和乌龟的距离可以无限地缩小,但永远追不上乌龟。 方励之先生曾经用物理语言描述过这个问题:在阿基里斯悖论中使用了两种不同的时间度量。一般度量方法是:假设阿基里斯与乌龟在开始时的距离为S,速度分别为V1和V2。当时间T=S/(V1-V2)时,阿基里斯就赶上了乌龟。 但是芝诺的测量方法不同:阿基里斯将逐次到达乌龟在前一次的出发点,这个时间为T'。对于任何T',可能无限缩短,但阿基里斯永远在乌龟的后面。关键是这个T'无法度量T=S/(V1-V2)以后的时间。 2-2 二分法悖论 这也是芝诺提出的一个悖论:当一个物体行进一段距离到达D,它必须首先到达距离D的二分之一,然后是四分之一、八分之一、十六分之一、以至可以无穷地划分下去。因此,这个物体永远也到达不了D。 这些结论在实践中不存在,但是在逻辑上无可挑剔。 芝诺甚至认为:“不可能有从一地到另一地的运动,因为如果有这样的运动,就会有‘完善的无限’,而这是不可能的。”如果阿基里斯事实上在T时追上了乌龟,那么,“这是一种不合逻辑的现象,因而决不是真理,而仅仅是一种欺骗”。这就是说感官是不可靠的,没有逻辑可靠。 他认为:“穷尽无限是绝对不可能的”。根据这个运动理论,芝诺还提出了一个类似的运动佯谬: 2-3 “飞矢不动” 在芝诺看来,由于飞箭在其飞行的每个瞬间都有一个瞬时的位置,它在这个位置上和不动没有什么区别。那么,无限个静止位置的总和就等于运动了吗?或者无限重复的静止就是运动?中国古代也有类似的说法,如: 2-4 “飞鸟之景,未尝动也” 这是中国名家惠施的命题,与“飞矢不动”同工异曲。这就是不可抗拒的推理和不可回避的实事相冲突。 德国哲学家尼采在《希腊悲剧时代的哲学》里有一章《可疑的悖论》,称芝诺的悖论为“否定感官的悖论”。尽管阿基里斯在赛跑中追上起步领先的乌龟完全合乎事实,但为什么“不合逻辑”?因为芝诺运用了“无限”这个概念,这是一种逻辑上的假设,而现实世界里是不可能有无限者存在的,这就出现了假设与现实的矛盾。 尼采说道:在这两个悖论里,“无限”被利用来作为化解现实的硝酸。如果无限是决不可能成为完善的,静止决不可能变为运动,那么,真相是箭完全没有飞动,它完全没有移位,没有脱离静止状态,时间并没有流逝。 换句话讲,在这个所谓的、终究只是冒牌的现实中,既没有时间、空间,也没有运动。最后,连箭本身也是一个虚象,因为它来自多样性,来自由感官唤起的非一的幻象。下面是尼采的分析: 假定箭拥有一种存在,那么,它就是不动的、非时间的、非造而有的、固定的、永恒的。这是一个荒谬的观念! 假定运动是真正的实在,那么,就不存在静止。因而,箭没有位置、没有空间。又是一个荒谬的观点! 假定时间是实在的,那么,它就不可能被无限地分割。箭飞行所需要的时间必定由一个有限数目的瞬间组成,其中每个瞬间都必定是一个原子。仍然是一个荒谬的观念! 尼采得出这样的结论:我们的一切观念,只要其经验所与的、汲自这个直观世界的内容被当作“永恒真理”,就会陷入矛盾。如果有绝对运动,就不会有空间;如果有绝对空间,就不会有运动;如果有绝对存在,就不会有多样性;如果有绝对的多样性,就不会有统一性。 事实上,这两个悖论中提到的这个“动与不动”的对立统一,今天都已经得到了完美的解决,这就是极限理论的诞生。牛顿在运动学研究时,初创微积分,但由于没有巩固的理论基础,出现了历史上的“第二次数学危机”。十九世纪初,法国科学家以柯西为首建立了极限理论,后来又经过德国数学家维尔斯特拉斯进一步的严格化,使极限理论成为微积分的坚定基础,运动问题也得到了合理的解释。 可以想见,在微积分和极限理论发明或被接受以前,人们很难解释这一运动佯谬。感官不同于思维,当希腊人用概念来判决现实的时候,如果逻辑与现实发生矛盾,芝诺指责感官为“欺骗”。当思维找不到合理解释的时候,直观的形式、象征或比喻都无济于事。尼采的分析虽然详细、精辟,但他无法把它们综合起来。 2-5 “一尺之捶,日取其半,万世不竭” 这是《庄子·天下》中惠施的一句名言。二千多年前中国古人同样运用了无限的概念。 战国名家宋国人惠施(约公元前370-前310)曾任梁国的宰相,论辩奇才,是庄子的朋友,和公孙龙并列为名家的代表人物。他的著作多已亡佚,只能从其他诸家的论述中看到他的言行片段。 惠施的学说强调万物的共相,因而事物之间的差异只是一种相对的概念,现存与惠施有关的奇怪命题,例如,“山与泽平”、“卵有毛”、“鸡三足”、“犬可以为牛”、“火不热”、“矩不方”、“白狗黑”、“孤驹未尝有母”等,都可以说是悖论,但是大部份没有留下具体的争辩过程。惠施的悖论在西方也很有影响。 毛泽东从辩证法的角度基本接受惠施无限可分的观点。一九六四年八月十八日,他同哲学工作者谈话时说:“列宁讲过,凡事可分。举原子为例,不但原子可分,电子也可分。”又说:“电子本身到现在还没有分裂,总有一天能分裂的。‘一尺之捶,日取其半,万世不竭’,这是个真理。不信,就试试看。如果有竭就没有科学了。” 有人注意到,毛泽东十分偏爱这句话,如五十年代中期对家钱三强,一九六四年八月同周培源、于光远,一九七三年、一九七四年接见杨振宁、李政道,等等,都提到这句话。 2-6 “1厘米线段内的点与太平洋面上的点一样多” 多少哲学家、数学家都唯恐陷入悖论而退避三舍。二十三岁获博士学位的德国数学家康托尔(1845-1918)六年以后向无穷宣战。他成功地证明了:一条直线上的点能够和一个平面上的点一一对应,也能和空间中的点一一对应。由于无限,1厘米长的线段内的点,与太平洋面上的点,以及整个地球内部的点都“一样多”。 然而,康托尔的“无穷集合”与传统的数学观念发生冲突,遭到谩骂。直到一八九七年第一次国际数学家会议,他的成果才得到承认,几乎全部数学都以集合论为基础。罗素称赞他的工作“可能是这个时代所能夸耀的最巨大的工作。” 同时,集合论中也出现了一些自相矛盾的现象,尤其是罗素的理发师悖论,以极为简明的形式震撼了数学的基础,这就是“第三次数学危机”。此后,数学家们进行了不懈地探讨。 例如,一九九六年英国剑桥大学出版社出版了亨迪卡的《数学原理的重新考察》,这本书以罗素的《数学原理》(1903)为蓝本的,试图完善逻辑和数学基础。它主要阐述了亨迪卡和桑朵新创的IF(Independence-Friendly First-Order Logic)逻辑及其可能产生的影响。它挑战了许多公认的观念,如公理集合论作为数学理论的适当框架,对说谎者悖论也作了进一步的探讨。它是否将引起一场逻辑和数学基础的革命?我们还将拭目以待。 |
||
-- 作者:区块链之吻 -- 发布时间:2019/12/23 8:56:00 -- 经典悖论漫游(中) 这是第二部份:由一因多果片面推理引致的悖论和由名实相悖引起的悖论。 (三)由一因多果片面推理引致的悖论 这种形式的悖论类似于诡辩。诡辩在现实中是令人厌恶的,但是在逻辑学的探讨中有相当的位置。孔多塞说:“希腊人滥用日常语言的各种弊端,玩弄字词的意义、以便在可悲的模棱两可之中困搅人类的精神。可是,这种诡辩却也赋予了人类的精神以一种精致性,同时它又耗尽了他们的力量来反对虚幻的难题。” 古希腊哲学流派中曾经有一个诡辩学派,又叫智者派。他们对自然哲学持怀疑态度,认为世界上没有绝对不变的真理。前面提到的普洛道格拉斯(Protagras,约公元前485-前410)是其著名的代表人物,他认为:“ 人是衡量万物的尺度。”雅典政府因其主张无神论,予以驱逐并焚烧了他的书籍。 从苏格拉底到亚里斯多德都反对诡辩学说,黑格尔说,苏格拉底常运用他的辩证法去攻击诡辩学派,尤其是普洛道格拉斯。尽管这些智者的理论多已失传,我们仍然可以从亚里斯多德的《形而上学》(吴寿彭译)中了解一些当时的论辩。 根据亚里斯多德的记载,柏拉图(Plato,公元前427-前347) 曾说:诡辩是专讨论“无事物”的,因为诡辩派的论题老是纠缠于事物的属性。例如,“文明的”与“读书的”为同抑异,“文明的哥里斯可”与“哥里斯可” 是否相同?以及每一事物并不常是而今是者,是否便当成是,由兹而引致(悖解) 的结论(同上)。 斥形式逻辑而提倡辩证法的黑格尔(1770-1831)说柏拉图发明了辩证法。“柏拉图运用辩证法以指出一切固定的知性规定的有限性。他从一推演出多,但仍然指出多之所以为多,复只能规定为一。”(《小逻辑》) 亚里斯多德认为:凡现存的事物其生成与消失必有一个过程,而属性事物则不然。然而,我们还得尽可能地追踪偶然属性之本质与其来由;也许因此可得明白何以不能成立有关属性的学术(《形而上学》卷六章二)。在他看来,诡辩理论就是“有关属性的学术”而不是“属性之本质与其来由”。 诡辩完善的是学术体系,而不是知识。孔多塞在《人类精神进步史表纲要人类精神进步史表纲要》(何兆武、何冰译)的《第四个时代》中说:然而希腊的智者和希腊的学人,“并没有发现真理,反而是在铸造各种体系;他们忽视了对事实的观察,为的是自己好投身于自己的想象之中;他们既然无法把自己的意见置于证明的基础之上,便力图以诡辩来维护它们。” 可见,诡辩学派的致命点就是忽略“本质”而纠缠“属性”,从现存的事物中推论出悖解的结论来,而不详细考察事物的真实,在实践的基础上加以证明。对付诡辩最好的方式是运用辩证法并在实践中加以考证。 3-1 “什么是诡辩?” 有学生问他的希腊老师:“什么是诡辩?”老师反问到:“有甲乙两人,甲很干净,乙很脏。如果请他们洗澡,他们中间谁会洗?” 这里有四种可能,一是甲洗,因为他有爱干净的习惯;二是乙洗,因为他需要;三是两人都洗,一个是因为习惯,另一个是因为需要;四是两人都没洗,因为脏人没有洗澡的习惯,干净人不需要洗。这四种可能彼此相悖,无论学生作出怎样的回答,老师都可以予以反驳,因为他不需要有一个客观的标准,这就是诡辩。 3-2 “父在母先亡” 这是一个可以自圆其说的乩语。它也有四种解释:一是“父在,母先亡”;二是“父在母之先亡”;三是如果父母健在,可以解释为将来;四是即使父母都去世了,也可以解释为“父亲在的时候,母亲就去世了。”或者是“父亲在母亲以前就去世了。”真是左右逢源。 从逻辑顺序上看,上面这两个例子正好是反其道而用。无论正命题还是反命题都可以根据所谓的客观理由进行诡辩,形成自圆其说或诘难。所以葛拉西安在《智慧书:永恒的处世经典》中说:“诡辩是一种欺骗,乍一听,它蛮有道理,并因其刺激、新奇而令人心惊,但随后,当其虚饰之伪装被揭穿,就会自取其辱。” 3-3 邓析赎尸诡论 《吕氏春秋》记载了这样一个故事:洧水发了大水,淹死了郑国富户家的一员。尸体被别人打捞起来,富户的家人要求赎回。然而捞到尸体的人要价太高,富户的家人不愿接受,他们找邓析出主意。邓析说:“不用着急,除你之外,他还会卖给谁?”捞到尸体的人等得急了,也去找邓析要主意。邓析却回答:“不要着急,他不从你这里买,还能从谁那里买?” 邓析生在春秋末年,与老子和孔子基本同时,是战国名家的鼻祖,著名的讼师,他的著作已经失传。 同一个事实,邓析却推出了两个相反的结论,每一个听起来都合乎逻辑,但合在一起就荒谬了。邓析是不是希望他们相持一段时间后,双方都可以找到一个可以接受的价格平衡点?我们只能猜测。 后来,邓析被杀,就是因为子产认为他“以非为是,以是为非,是非无度,而可与不可日变”。可见,邓析是一个没有原则的人。身为讼师,邓析善于辞辩,而不跳出诡论寻找客观的解决办法。严谨的逻辑推理固然具有说服性,但最终还是要回到现实中来。 3-4 公孙龙论秦赵之约 《吕氏春秋》介绍过公孙龙的一个诡论:秦国与赵国订立条约:今后,秦国想做的,赵国帮助;赵国想做的,秦国帮助。不久,秦国兴师攻打魏国,赵国打算援救。秦王不高兴,差人对赵王说:秦国想做的,赵国帮助;赵国想做的,秦国帮助。现在秦国要打魏国,而赵国援救他们,这是违约。赵王把这个消息转告给平原君,平原君向公孙龙请教。公孙龙回答:“赵王也可以派人对秦王说:赵国打算援救魏国,现在秦国却不帮助赵国,这也不合乎条约。” 不管这个寓言的真实性如何,他的推理无懈可击。公孙龙对于秦赵之约的回应,与邓析赎尸诡论一脉相承。但公孙龙是站在弱小的赵魏这一边反对强秦的。 3-5 “彼亦一是非,此亦一是非。” 这是《庄子·齐物论》中的一句话,以强调事物的相对性而著称,比如,人睡在潮湿的地方会腰疼,但泥鳅会腰疼吗?人爬到高树上会胆怯,猿猴会腰疼吗?于是,他的结论是:“彼亦一是非,此亦一是非。”各有各的相对标准。 《团结报》曾经刊登过一篇一勺的《名师出高徒》。说康白情1919年前在北京大学选修马叙伦先生的“老庄哲学”,没有一次不迟到。有一次,马叙伦责问康白情为什么姗姗来迟。康白情回答:“住得太远。”马先生不以为然,反问道:从你的住处走到这里只要三、五分钟,怎么叫太远!康白情也不示弱,说:先生讲庄子,庄子说:“彼亦一是屋非,此亦一是非”。先生不以为远,而我以为远。马叙伦一时无话可说。 3-6 “我没有受贿” 一个商人被控受贿。他宣称:“我没有受贿。” 显然,这个商人既是观察者也是被观察者。我们不知道他是以观察者的身份进行辩护,还是以被观察者的身份进行诡辩。这两种推论都合乎逻辑,如果没有别的证据,就不能判决(引自“Web Dictionary of Cybernetics and Systems”)。 3-7 囚犯诡论 甲乙两人偷东西,人赃俱物。他们被分开审问,可能的惩罚如下: 乙否认 乙承认 甲否认:甲、乙各一年监禁 乙释放、甲五年监禁 甲承认:甲释放、乙五年监禁 甲、乙各三年监禁 甲乙二囚犯都会想到对自已最有利的去做:以甲而言,甲若承认,最多三年监禁,如果乙也承认;如果乙否认,甲马上获得自由。这个结果并不坏。这是博弈,乙也会同样这么想。如果甲改变主意,将冒监禁五年,而乙却获得自由;反之也一样。如果双方都改变主意,各监禁一年,也可以达到“共利”。 但是,这一决策的过程可能是无限的理性推理:假如我选择“共利”策略,我必定相信对方也将选择“共利”策略;假如我选择“私利”策略,对方也会选择“私利”策略予以防范。这个“推己及人,推人及己”的过程可以无限地推下去,他的极限状态在博弈论里叫做“共享知识(Common Knowledge)”,但是没有人可以达到这个状态,囚犯也摆脱不了这个悖论。 (四)由名实相悖引起的悖论 古代中国有不少经典的悖论都来自名家。名家是战国时期的一个学派,他们的学说在于循名责实,但结果也往往被认为是流于诡辩。名家始于邓析,后有惠施、公孙龙等大家。 在古希腊,亚里斯多德认为:辩证家与诡辩派穿着与哲学家相同的服装,但不是一回事。对于诡辩术,智慧只是貌似而已,辩证家则将一切事物囊括于他们的辩证法中,而“实是”也是他们所共有的一个论题;因而辩证法也包含了原属于哲学的这些主题。诡辩术和辩证法谈论与哲学上同类的事物,但哲学毕竟异于辩证法者由于才调不同,哲学毕竟异于诡辩术者则由学术生活的目的不同。哲学在切求真知时,辩证法专务批评;至于诡辩术尽管貌似哲学,终非哲学(《形而上学》卷四章一)。 冯友兰先生在《中国哲学简史》第八章《名家》里有专门的讨论。他认为,中国的“名家”不完全等同于西方的诡辩家、逻辑家或辩证家。如果说古希腊的辩证家和诡辩派专攻属性而不是本质的话,那么名家则在于研究“名”与“实”的关系,而且重“名”甚于重“实”是他们的精神实质。这里的“名实”就是名目与实际。冯友兰认为中国的名家应该翻译为“School of Name”以示区别,我在《不列颠百科全书》上看到的正是这样翻译的。 名与实关系的争论对中国哲学的影响巨大,如“孔子有正名、老子有无名、墨子有取实予名的争辩”。除名家以为,荀子对古逻辑学的贡献也很大。 公孙龙的辩论执名为实,“专决于名”而不落实到经验的事物,看看他的雄辩,就会发现一些奇怪的问题。《庄子·秋水篇》提到,公孙龙曾经自夸:“困百家之知,穷众口之辩”。 4-1 “白马非马” 战国时赵国人公孙龙曾经著有《公孙龙子》一书,平原君礼遇甚厚。其“白马非马”和“坚白异同之辩”都是他的著名命题。 据说,公孙龙有一次骑马过关,把关的人对他说:“法令规定马不许过。”公孙龙回答说:“我骑的是白马,白马不是马,这可是两回事啊。”公孙龙的“白马”有没有过关,我们不得而知。从常人的观点来看,守关的兵士八成认为公孙龙是在诡辩。这也是一个逻辑上“莫能与辩”,现实中不能成立的例子。 冯友兰认为《公孙龙子》里的《白马论》对“白马非马”进行了三点论证: 一是强调“马”、“白”、“白马”的内涵不同。“马”的内涵是一种动物,“白”的内涵是一种颜色,“白马”的内涵是一种动物加一种颜色。三者内涵各不相同,所以白马非马。 二是强调“马”、“白马”的外延的不同。“马”的外延包括一切马,不管其颜色的区别;“白马”的外延只包括白马,有颜色区别。外延不同,所以白马非马。 三是强调“马”这个共相与“白马”这个共相的不同。马的共相,是一切马的本质属性,它不包涵颜色,仅只是“马作为马”。共性不同,“马作为马”与“白马作为白马”不同。所以白马非马。 前面我们说到,辩证法是在对付诡辩论的过程中发展起来的。黑格尔在《小逻辑》中说:“辩证法切不可与单纯的诡辩相混淆。诡辩的本质在于孤立起来看事物,把本身片面的、抽象的规定,认为是可靠的。”(《逻辑学概念的进一步规定和部门划分》) 从辩证法的角度看,“白马非马”割断了个别和一般的关系。白马属于个性,特指白颜色的马;马属于一般,具有各种颜色马的共性。公孙龙区分了它们之间的差别,但是又绝对化了这种差别。白马尽管颜色上不同于其他的马,如公孙龙提到的黄马、黑马,但仍然是马。作为共性的“马”寓于作为个性的“白马”之中。“马”作为一般的范畴,包括各种颜色的马,公孙龙的白马自然也不例外。 4-2 “杀盗非杀人也” 这个命题与“白马非马”何其相似,尽管论证的方法和目的不同。荀子把墨辩“杀盗非杀人也”归入“惑于用名以乱名”的诡辩。荀子认为,在外延方面“人”的范畴包含了“盗”的范畴。所以,说“盗”的时候,就意味着说他同时也是“人”;杀“盗”也是杀人。 4-3 坚白石论 坚白石论指一块“坚白石”,它有坚、白、石三个要素组成。公孙龙主张“坚”为石头的特性,“白”为石头的颜色。眼睛看到的这块石头是白色的,手触摸到的这块石头才知到它是坚硬的;白色由视觉而得,坚硬由触觉而来,坚与白不能同时被认知。因此,公孙龙认为就一块坚白石而言,人不可能同时认识到其中三个组成要素:坚、白、石,而只能是坚石或白石。 这是从感知的角度来证明坚、白彼此分离,是分析方法的早期运用。“离坚白之辩”是古代中国的一个著名命题,习惯上人们并不接受,但是对于名家自身来讲,如果没有精密的思考,也不可能提出这些深刻的问题。 尽管名家在逻辑上的辩论天下无敌手,但是遭到诸家反对。庄子说他们:“饰人之心,易人之意,能胜人之口,不能服人之心,辩者之囿也。”《荀子》也认为:“虽辩,君子不听。”这的确是名家的吊诡。 中国古有名辩逻辑,唐代传入印度因明,近代又引进了西方逻辑,成为世界三大逻辑的汇合点。黑格尔在《小逻辑》里说:“一说到诡辩我们总以为这只是一种歪曲正义和真理,从一种谬妄的观点去表述事物的思想方式。但这并不是诡辩的直接的倾向。诡辩派原来的观点不是别的,只是一种‘合理化论辩’的观点。”这是针对古希腊人说的,对中国的名家来讲,同样适合。 4-4 怎么翻译? 英语里有一个Buchowski悖论:“My younger brother is older than I am.” 单纯地看这句话是一个悖论,实际上这个“我”有两个哥哥。小哥哥(younger brother)自然比他的年龄大。但是younger brother在英语里又有“弟弟”的意思,硬译过来,如果是:“我弟弟的年龄比我大。”为常识错误;如果是:“我的小哥哥的年龄比我大。”构不成悖论。 英语的brother与汉语里的“兄弟”并不完全对应。在这个例子里,汉语对“兄弟”作了进一步的划分,减少了歧意。 |
||
-- 作者:区块链之吻 -- 发布时间:2019/12/23 8:56:00 -- 经典悖论漫游(下) 这是第三部分:由前提不自洽导致的悖论和由权变遭遇的悖论。 (五)由前提不自洽导致的悖论 这里我们将看到,前提不自洽,结论就无法自圆其说,甚至荒谬或没有结论。 5-1“罗素是教皇” 从单纯的逻辑上来讲,荒谬的假设可以推论出任何荒谬的结论,哪怕推理过程无懈可击。有人曾经让罗素证明从“2+2=5”推出“罗素是教皇”。罗素证明如下: 由于2+2=5,等式的两边同时减去2, 得出2=3;两边同时再减去1, 得出1=2;两边移位, 得出2=1。 教皇与罗素是两个人,既然2=1,教皇和罗素就是1个人,所以“罗素就是教皇”。 这个荒谬的结论,就是由一个荒谬的假设引发出来的。 5-2“亚里斯多德是类概念” 这是严格按照三段论推导出来的结果。请看: (1)亚里斯多德是哲学家, (2)哲学家是类概念, (3)所以,亚里斯多德是类概念。 亚里斯多德(Aristotle,公元前384-前322)是希腊大哲学家和天文学家,曾就学于柏拉图,继承苏格拉底以来的希腊哲学而自成体系,在西方的影响最大。他系统总结了三段论法原理,奠定了逻辑思维的基础。 上面这个结论恐怕连亚里斯多德本人也不会认同。因为其中蕴含了一个“语义悖论”。因为语句(1)中的哲学家和语句(2)中的“哲学家”不在一个层次上,前者是对象概念,后者是元概念。两个前提内涵不一致,结论就荒谬了。从根本上来讲这不是一个语言或语法问题,而是一种逻辑错误。自塔尔斯基在30年代提出“语言层次论”来,就一直受到人们的关注。 5-3自相矛盾 这个例子正相反,是一个因为前提不相容而推不出结论的经典例子。 《韩非子·势难》介绍了这个预言:有一个同时卖矛和盾的人。他先夸他的盾最坚固,无论什么东西都戳不破;接着又夸他的矛最锐利,无论什么东西都能刺透。旁人问他:如果用他的矛来刺他的盾会有什么结果,他回答不上来,因为两者相互 抵触。这是一个既不可以同时为真,也不可以同时为假的命题。前提出现矛盾,也就无法推出结论。 5-4纸牌悖论 纸牌悖论就是纸牌的一面写着:“纸牌反面的句子是对的。”而另一面却写着:“纸牌反面的句子是错的。”这是由英国数学家Jourdain提出来的。我们同样推不出结果来。它最简单的形式是: 5-5“悖论元” 下面这句话是对的, 上面这句话是错的。 这也是一个有名的悖论,叫乔丹真值(JourdainTruth-Value)悖论。以上这三个例子基本属于一个类型。 5-6“先有鸡,还是先有蛋?” 这个互为因果的循环推理本身无法自我解脱,需要实际的考证,如考古学和生物学的研究成果等,才能打破这一循环。 它里面也隐含着一个不相容的前提假设:“鸡是由蛋孵化出来的,蛋又是由鸡生出来的。”单独来看都符合日常观察,但合在一起却是一对不自洽的假设。 5-7“如果说上帝是万能的,他能否创造一块他举不起来的大石头?” 这是一个流传很广的悖论。如果说能,上帝遇到一块“他举不起来的大石头”,说明他不是万能;如果说不能,同样说明他不是万能。这是用结论来责难前提。 这个“全能者悖论”的另一种表达方法是:“全能的创造者可以创造出比他更了不起的事物吗?” 5-8“你会杀掉我” 这个故事有几个版本。大意是说:一夥强盗抓住了一个商人,强盗头目对商人说:“你说我会不会杀掉你,如果说对了,我就把你放了;如果说错了,我就杀掉你。”商人一想,说:“你会杀掉我。”于是强盗把他放了。 推理一下:如果强盗把商人杀了,他的话无疑是对的,应该放人;如果放人,商人的话就是错的,应该杀掉,又回到前面的推理,这是一个悖论。聪明的商人找到的答案使强盗的前提互不相容。 5-9“你会吃掉我的孩子” 这个例子与上面的例子逻辑同构。 一条鳄鱼抢走了一个小孩,它对孩子的母亲说:“我会不会吃掉你的小孩?答对了,孩子还给你;答错了,我就吃了他。”我们已经知道了母亲的答案:“你会吃掉我的孩子。” 5-10两小儿辩日 这是《列子》里的一则预言:孔子遇到两个小孩在争论,一个说:“日出时,太阳距离我们近,中午距离我们远。因为日出时太阳大得像车轮,中午小得像盘子。这不正是近大远小吗?”另一个却说:“日出时,太阳距离我们远,中午距离我们近。因为日出时我们不觉得热,中午却非常热。这不是近热远凉吗?”孔子不能答。 这是今天的一个科学常识问题,但两千多年前的人并不知道。从逻辑上看,这里有“近大远小”、“近热远凉”两个测度的标准。在回答问题以前,应该搞清楚哪个标准更准确,或者都不准确。 5-11爱瓦梯尔应不应该付学费? 传说古希腊人爱瓦梯尔(Eulathlus)向普洛太哥拉斯学习辩术(另有一说是学习法律)。他们的约定是:爱瓦梯尔先付一半学费,另一半学费等学成后在第一场辩护胜诉时再付,如果败诉,则学费不必再交。 但是爱瓦梯尔毕业以后,没有担任辩护工作,不打算交另一半学费。 普洛太哥拉斯准备告他,说:“如果我胜诉了,法官会判你付我学费;如果我败诉,根据约定你还是要付我学费。总之要付。”。爱瓦梯尔则说:“如果我胜诉,法官也会判我不付学费;如果我败诉,按照约定我也不必付另一半的学费。总之不付。”(见王九逵《逻辑与数学思维》) 这个问题反过来看,逻辑上也同样成立。如果爱瓦梯尔先说:“如果你告我,我就可以不付学费了。”普洛太哥拉斯也可以用同样的方式来反驳。如此争论下去不可能有结果。 这里的问题就是他们双方都默认“约定”和“判决”可以同时而且等效地来解决他们的纠纷,这是他们共同的前提。从逻辑上化解它们的办法就是选择其中的一个进行最终裁决。 5-12梵学者的“预言” 和上面的例子完全类似,这是一个梵学者(印度的预言家)的女儿用悖论来为难她的父亲的故事。 女儿在纸上写了一行字压在水晶球的下面。然后对父亲说:纸上写的可能发生,也可能不发生。如果你预言会发生就写“是”,反之就写“不”。 梵学者写下他的预言“是”,女儿拿出水晶球下面的纸,念到:“你将写一个‘不’字。”学者错了。实际上,他写个“不”字,也会错,因为预言已经发生了。 女儿的“不”有两重含义,它一方面与字面上的“是”相反,另一方面与实际上的“不”相反,双重标准。由于没有事先界定,梵学者也可以反过来和他的女儿作无限的争论。 (六)由权变遭遇的悖论 6-1阿雷斯(Allais)悖论 下面两个式代表你将获得的收入,X是一个不定的量,你将选择哪一个,S1还是S2? (1)S1=0·9X+$100,000 (2)S2=0·89X+$250,000 显然,最好的选择取决于X是多少。 当X=$15,000,000,S1=S2=$13,600,000 当X〉$15,000,000,S1〉S2 当X〈$15,000,000,S1〈S2 这个悖论对决策理论有较大影响。 6-2纽卡(Newcombs)悖论 这也是决策理论中的一个。有两个盒子A和B放在桌子上: A是透明的,可以看见里面有$1,000, B是不透明的,上面写着或者是$1,000,000,或者是0。 你可以在下面的两种选择中,只能取一个(1)或(2): (1)只选择B (2)A和B两个都选 你会作出什么选择? 有一个教授曾经作过一个实验:他让1000个学生选,其中999个学生选择了(1),只有1个学生选择了(2)。而这999个学生一人只获得$1,000,而那1个学生却获得了$1,000,000。为什么呢?因为这个教授事先已经作了预测,并作出这样的安排: 如果选(2)B盒子里就不放任何一分钱, 如果选择(1)B盒子里就放$1,000,000。 而这个教授的预测只有千分之一的失误。如果你已经知道了这个结果,重新再选,会选哪一项。注意,这一回,教授可能又作出了新的预测。 6-3谷“堆”的定义 如果1粒谷子落地不能形成谷堆,2粒谷子落地不能形成谷堆,3粒谷子落地也不能形成谷堆,依此类推,无论多少粒谷子落地都不能形成谷堆。 从真实的前提出发,用可以接受的推理,但结论则是明显错误的。它说明定义“堆”缺少明确的边界。它不同于三段论式的多前提推理,在一个前提的连续积累中形成悖论。从没有堆到有堆中间没有一个明确的界限,解决它的办法就是引进一个模糊的“类”。 这是连锁(Sorites)悖论中的一个例子,归功于古希腊人Eubulides,后来的怀疑论者不承认它是知识。“soros”在希腊语里就是“堆”的意思。最初是一个游戏:你可以把1粒谷子说成是堆吗?不能;你可以把2粒谷子说成是堆吗?不能;你可以把3粒谷子说成是堆吗?不能。但是你迟早会承认一个谷堆的存在,你从哪里区分他们? 它的逻辑结构: 1粒谷子不是堆, 如果1粒谷子不是堆,那么,2粒谷子也不是堆; 如果2粒谷子不是堆,那么,3粒谷子也不是堆; --- 如果99999粒谷子不是堆,那么,100000粒谷子也不是堆; ------------------------------------ 因此,100000粒谷子不是堆。 按照这个结构,无堆与有堆、贫与富、小与大、少与多都曾是古希腊人争论的话题(见《不列颠百科全书》)。 6-4秃头的定义 这也是连锁悖论中的一例,和上面的游戏完全一样。最早叫Falakros谜: 你可以把只有1根头发的叫秃头吗?能;你可以把只有2根头发的叫秃头吗?能;你可以把只有3根头发的叫秃头吗?也能。但是你不会把有一万根头发的人叫秃头。你从哪里区分他们? 6-4“一整袋谷子落地没有响声” 在古希腊,还流传着这样一个故事:如果1粒谷子落地没有响声,2粒谷子、3粒谷子落地也没有响声,类推下去,1整袋谷子落地也不会有响声。 响声是由振动引起的,1粒谷子落地可能引起的振动太小,人耳听不到,但是用仪器却可以测得出来。而一袋谷子落地引起的振动大,人耳自然就可以听得到了。 应该注意,古希腊辩论家的用意不在于此,他们并不是真的要探讨事实,而是试图找到逻辑演绎与事实的差别。如果承认谷子落地从没有响声到有响声是一个系列,那么其间也会有一个变化的模糊区域。 6-5预料之外的绞刑时间 这个悖论在英语里叫“ParadoxoftheUnexpectedHanging”;最早从口头传开是在本世纪四十年代。 一个囚犯在星期六被判刑。法官宣布:“绞刑时间将在下一周七天中的某一天中午进行,但是具体哪一天行刑将在这一天的上午再通知你。”囚犯分析道:“我将不可能在下个星期六赴刑,这是最后一天。因为星期五下午我还活着,那么我知道星期六中午我一定被处死。但是,但是这和法官的判决有矛盾。”根据同样的推理,他认为下一个星期五、星期四、星期三、星期二、星期一、星期日。因此,法 官的判决将无法执行。 这种连锁悖论式的推理并不难理解,法官的判决可以在下个星期六以外的任何一天被执行,囚犯的预期落空。还有一个“预料之外的考试时间悖论”和这个悖论的结构完全一致。 6-6“卵有毛” 惠施曾经与一个辩者辩论过这个题目。辩者说鸡蛋里面有毛,惠施却反对。 辩者说:“如果鸡蛋里没毛,那么孵出来的小鸡怎么身上有毛?”惠施说:“鸡蛋里只有蛋清和蛋黄,没有毛。你什么时候看见过鸡蛋里面有毛了?小鸡身上的毛是小鸡身上的毛,不是鸡蛋里的毛。”但是辩者不能接受。 辩论双方都以“眼见为实”做标准,从而忽视了从没有毛到有毛的转化过程。不知道生物学对此会作出什么解释,从方法上来讲,他们没有界定毛从无到有的界限,似乎都不接受“小鸡身上的毛也可能是鸡蛋里的毛”的模糊区域。 6-7宝塔从有到无 这是哲学中从量变到质变的一个例子。一个宝塔,如果从下面抽走它的砖,一块一块地抽,这是量变。当到达一定的度时,宝塔倒塌了,发生了质变,说明宝塔没有了。我们可以看到一准确的“度”。 但是现在从上面拿走它的砖,一块一块地抽,这也是量变。直到拿完,宝塔不存在了,发生了质变,但我们就不容易找到从量变到质变中间的一个准确的“度”了。 6-8孪生子佯谬 这是一个与相对论有关的悖论(TwinParadox)。 爱因斯坦的成就之一,就是引进了一个定律,用C表示恒定的真空光速,把它纳入自然常数之列,作为不可达到的最高临界速度。根据光速恒定,引出了相对论的两个著名的“佯谬”,它们曾经被人嘲讽为相对论的“荒诞无稽”的结论。 “孪生兄弟佯谬”是指以快速运动为参考系的钟,比静止参考系中的钟走得慢。根据这一结论,我们可以得出这样的一个结果:一个乘飞船按接近光速的速度在太空旅行的人,当他返回地球的时候,就会比生活在地球上的孪生兄弟年轻。因为他的生物钟,比留在地球上的人要慢。尽管目前的宇宙飞船还远远达不到接近光速的速度。 在1905年,爱因斯坦的狭义相对论确立以前,牛顿定律是速度远远小于光速条件下的定律,机械自然观统驭着人们的空间想象,因此无法解释这一现象。爱因斯坦关于时间相对论化的概念是崭新的,它取缔了牛顿“绝对时间”的概念,使 “绝对运动”概念也失去了立足之地。 6-9“会变的尺” 这是相对论引出的另一个“佯谬”:一把快速运动着的尺子,它和静止状态相比,在运动方向上长度缩短。这个问题是从迈刻尔逊实验结果提出来的,后来形成了洛仑兹的机械收缩假说。爱因斯坦认为,这种收缩可以用两个参考系之间存在着 的相对速度来解释(见聂运伟编著的《相对论的摇篮:爱因斯坦传》)。 6-10夜空为什么是暗的? 这是有名的奥伯斯(Olbers,HeinrichWillhelm)悖论:如果空间无限延展,而且星体均匀分布,我们的任何视线都应该碰到起码一颗星球。那么,天空不是应该一直都是明亮的吗?这个结论显然与事实不符。 这个问题早在1610年开普勒就注意到,直到1823年德国天文学家奥伯斯重新提出以后才广泛引起关注。过去有很多的猜测,如宇宙只有有限的星体、星体的分布不是均匀的、星体越远可视光越少,遥远的光还没有到达地球等等。“大爆炸”理论出现以后,宇宙的年龄不是无限的,被人为是一个最重要的原因。从“大爆炸”开始算起,宇宙距今有一百到两百亿年的历史。年轻的宇宙还没有时间将 光充满夜空(《星期日电讯》1997年10月5日)。 后记 本文所记都是流传很广的常见悖论。随着现代数学、逻辑学、物理学和天文学的快速发展,又有不少新的悖论大量涌现,人们在孜孜不倦地探索,预计他们的成果将极大地改变我们的思维观念。本文罗列的悖论解释多为一管之见,错误难免,希望读者批评指正。 |